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A finite element approach to the thermal analysis of a thin structure located in three- 
dimensional space is presented. The problem is reduced to a two-dimensional one with special 
boundary conditions. A comparison of the results obtained in the paper with the full 3D solution 
is discussed. 

Three-dimensional finite elements are usually used to analyse three dimensional 
field problems. However, in some cases it is convenient to replace three- 
dimensional thin structures by two-dimensional ones. Since descriptive geometry 
presents spatial problems as plane problems, this seems to be the most suitable tool 
for such an analysis. It is well known that every three-dimensional thin structure 
may be shown as a two-dimensional one through an appropriate developed view. 
We shall use specific boundary conditions in developing the structure. 

Developed view of the three-dimensional structure 

Suppose that the three-dimensional thin surface t2 3 is divided into finite elements, 
and the region 0 2 is the two-dimensional developed view of  Q 3, obtained in such a 
way that cutting lines lie along the contact lines of finite elements. For instance, for 
the surface of the cylinder f2 3 with discretization meshes shown in Fig. 1, the 
developed view of this cylinder may be shown as in Fig. 2. Another example 
showing a box is given in Figs 3 and 4. It is well known that for every three- 
dimensional surface we can find an appropriate developed view by using 
approximations in some cases. The methods of finding the developed view are given 
in different text-books on geometry and will not be analysed in this paper (see [1, 3], 
for instance). 
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Corresponding nodes (1-1~2-2,. . . ,5-5) have to have 
the same temperatures 

Fig. 1 Cylinder with discretization meshes Fig. 2 Developed view of cylinder (corresponding 
nodes are denoted by the same numbers) 
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Fig. 3 Box with discretization meshes 
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Fig. 4 Developed view of the box (corresponding 
nodes are joined) 

Heat flow in three-dimensional developable structures 

Let f2~ be the developed view of  the surface. In order to show the temperature 
distribution in the region 0 3, we must join the corresponding nodes at the boundary 
of 0 2 (see Figs 2 and 4). In this way we obtain the same situation of  heat flow as at 
0 3 . This may be done by joining corresponding nodes by the elements, or 
computing the equality of  temperatures in corresponding nodes. 

Finite element equation 

An appropriate mathematical description of  the heat conduction process in a 
material region ~r~3 (three-dimensional) is given by 

oCp tgt t3xi \ "JO-~xj] - Q  = O, i , j  = 1, 2, 3 (1) 

where ~ is the material density, Cp is the heat capacity, k u are the elements of  the 
conductivity tensor, Q is the volumetric heat source, t is time, x~ are the spatial 
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coordinates and O is temperature. The boundary of the region ~r is defined by 
F 2 = F~ + F 2 (the boundary is locally two-dimensional), where F~2 and Fq2 are parts 
of the boundary for which the temperature and heat flux are specified. The relevant 
boundary conditions for Eq. (1) may then be expressed by 

and 
6 ) = O h  on F 2 (2) 

(k . .OO~+q~+q~ 0 on 2 qini + \ 'J c~xj] = Fq (3) 

where O b is an applied boundary temperature, qi is the applied heat flux vector, n i is 
the unit outward normal to the boundary Fq, qc is the heat flux due to convection, 
and qr is the heat flux due to radiation. 

When we describe heat conduction analysis using the development view of the 
three-dimensional structure into a two-dimensional plane, finite elements are 
employed to solve in two dimensions. The two-dimensional problem (in region 0 2 ) 
of the transient heat flow is assumed to be described by the equation 

aO ~ k o - Q =  O, i , j =  1,2 (4) oCp Ot ~xi 

where all notations used are the same as in Eq. (1). 
The boundary F 2 of the region 0 2 may be defined by F 2 2 2 = F o+ Fq. The 

boundary conditions Eq. (4) are specified by Eqs (2) and (3). The problem of 
radiation may also be analysed. In such cases the problems of internal radiation 
should be discussed. The methods of such analysis will not be undertaken in the 
present approach. 

Assume that within each finite element the temperature field may be 
approximated by 

N 
O(xl ,  x2, t) = ~, r  x2)O,(t ), (5) 

tl--I 

or in matrix notation 

6)(xl, x2, t) = ~ r ( x l ,  x2)O(t). (6) 

In Eq. (5), ~ is an N-dimensional vector of interpolation (shape) functions, On is a 
vector of nodal point unknowns, and Nis the number of  nodal points in an element. 

An application of the Galerkin method to Eq. (4) produces the following 
equation 
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(7) 

H 

Equation (7) may be rewritten using Green's theorem (basically an integration by 
parts of the second-order derivative term) to give the equation 

f 0 C p @ @ r ~ t  dO2 + {" g(l) g@T J~X/ku-~xj  O dr22 = 

= ~@Qdt~- /2@(qini+qc)dF2. 
e e 

Let QCp and ki2 be approximated by 

eCp = qr ec~, 

(8) 

(9) 
ki j  = l lTki j  

where q is a vector of interpolation functions and QCp and k u are vectors of nodal 
point heat capacities and conductivities, respectively. A similar technique may be 
used to allow the volumetric heat source within an element to have an arbitrary 
functional dependence. Thus, let 

a = qTQ (10) 

where Q is a vector of nodal point volumetric sources. Substitution of Eqs (9) and 
(10) into Eq. (8) produces the following equation 

f11roCp~@rdf2Z~t + fO@ r~x~l k'J~-~xj df220c30T = 

O1) 

= S_@qrQ dr22- I @(q,n,+qc) dF2" 

Once the forms of the interpolation functions @ and q are specified for an element, 
the integrals in Eq. (11) may be evaluated. Such an evaluation leads to the matrix 
equation for each element as 
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where 

M 

M O + K O  = FQ+F 

= ~_ q r p c  p ~ r  d~,~2, 
a~ 

f ~  T O~T K =  ~x/~! k,j -~-xi dr22, 

a~ 

FQ = ~ OllTQ dr22, 

r = - f �9 (q,+qc) dF z. 
r~ 

The previous discussion was directed towards the derivation of the equation for a 
single element. The finite element model for the entire region s'23 is obtained through 
assembly of the element matrices by imposing appropriate interelement continuity 
requirements on the dependent variable. 

Let us consider one thin finite element f2 e of the area I t2e J. The area of the 
boundary of this element I Fe I is equal to the area I Oe I. Moreover, each element has 
two boundary surfaces with the same areas. 

General remarks. It is important how thin the structure has to be for this method 
to work. These problems depend on the type of analysis, the kind of structure, the 
material properties and the boundary conditions, and should be analysed 
separately for each case. 

Example solution 

Heat flow in the pipeline element 

We will analyse the heat flow in a steel cylinder of wall thickness 0.2 mm and 
diameter 4 cm. Initial temperature 20~ environmental temperature 20~ properties 
of steel: thermal conductivity 50 kJ/mKs, specific heat 1000 J/kg K, convection 
coefficient 0.25 W/m z K. Figure 6 shows a developed view of this cylinder in the 
situation when the moving heat source occurs on the cylinder. The velocity of the 
heat source is v = 0.01 m/s, and the heat rate is q = 15 x 104 W/m. The situation 
described above may represent the welding process of pipeline elements. In Fig. 6, 
the heat source is moving through the cutting line. Such a situation certainly has to 
arise if the heat source is moving around the cylinder. Figure 7 shows a similar 
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example for the velocity 0.01 m/s and heat rate 75,000 W/m. A comparison with the 
full 3D model is very good. The results are accurate; good agreement is obtained 
using different meshes (Fig. 5). 

DiscretizGtion 
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Discretization 2 
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1/2 of region is considered 

Fig. 5 Discretizations o f  cylinder 

v = 0.01 m/s  q =15x lOt'W/m t = 3 s  
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Fig. 6 Heat  f low on  the developed view o f  cylinder 
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v=O.01 m/s  q = 75000 W/m- t = 3 s  

50 ~ 50oC 

100 ~ 
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v= 0.01 m ls  q=75000 Wlm t = S s  
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Fig. 7 Heat flow on the developed view of cylinder 

Conclusions 

The method described in the paper may also be used for more complex 
problems, such as heat flow on a spherical surface, on joined cylinders, etc. The 
applications of  this method for solving specific technical problems are wide, and 
will be discussed in the future. 
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Zmammenf~mng - -  Eine endliche Elemente involvierende Nfiherung des Problems der thermischen 
Analyse einer im dreidimensionalen Raum lokalisierten dfinnen Struktur wird entwickett. Das Problem 
wird auf ein zweidimensionales mit speziellen Randbedingungen reduziert. Die erhaltenen Ergebnisse 
werden mit der dreidimensionalen Lfsung verglichen. 

Pe31ol~e - -  IIpe~terasaen orpan~elmu~ 3JleMenT noaxoAa r TepMI4qeCKoMy anaan3y xoHro~ 
ca~ayrTypu, onpeAe~eMo~ a TpexMepnoM npoerpanc'rae. 3aAaqa pemena npeo6paaoaanneM Ao 
~aeyMepnoro npoo'panerBa co cneunam,nbu~H rpanannuMn yc~oaHJMa. O6cyx, Oleno conocraaaenne 
no.ayqennux pe3yabTaroa c ratoalaMH np~ a-pexMepnora pemenn~. 
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